Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response.

نویسندگان

  • Megumi Tasaka
  • Naoya Sakamoto
  • Yoshie Itakura
  • Mina Nakagawa
  • Yasuhiro Itsui
  • Yuko Sekine-Osajima
  • Yuki Nishimura-Sakurai
  • Cheng-Hsin Chen
  • Mitsutoshi Yoneyama
  • Takashi Fujita
  • Takaji Wakita
  • Shinya Maekawa
  • Nobuyuki Enomoto
  • Mamoru Watanabe
چکیده

Viral infections activate cellular expression of type I interferons (IFNs). These responses are partly triggered by RIG-I and mediated by Cardif, TBK1, IKKepsilon and IRF-3. This study analysed the mechanisms of dsRNA-induced IFN responses in various cell lines that supported subgenomic hepatitis C virus (HCV) replication. Transfection of dsRNA into Huh7, HeLa and HEK293 cells induced an IFN expression response as shown by IRF-3 dimerization, whilst these responses were abolished in corresponding cell lines that expressed HCV replicons. Similarly, RIG-I-dependent activation of the IFN-stimulated response element (ISRE) was significantly suppressed by cells expressing the HCV replicon and restored in replicon-eliminated cells. Overexpression analyses of individual HCV non-structural proteins revealed that NS4B, as well as NS34A, significantly inhibited RIG-I-triggered ISRE activation. Taken together, HCV replication and protein expression substantially blocked the dsRNA-triggered, RIG-I-mediated IFN expression response and this blockade was partly mediated by HCV NS4B, as well as NS34A. These mechanisms may contribute to the clinical persistence of HCV infection and could constitute a novel antiviral therapeutic target.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Full Length Hepatitis C Virus Polyprotein and Interactions with the Interferon-Beta Signalling Pathways in vitro

Background: Hepatitis C is a global health problem. The exact mechanisms by which hepatitis C virus (HCV) can evade the host immune system have become controversial. Whether HCV polyproteins modulate IFN signalling pathways or HCV proteins are responsible for such a property is the subject of interest. Therefore, an efficient baculovirus delivery system was developed to introduce the whole geno...

متن کامل

Immunogenicity Evaluation of a DNA Vaccine Expressing the Hepatitis C Virus Non-Structural Protein 2 Gene in C57BL/6 Mice

Backgrounds: Most of the hepatitis C virus (HCV) infections elicit poor immune responses and 75% to 85% of cases become chronic therefore, the development of an effective vaccine against HCV is of paramount importance. In this study, we aimed to evaluate co-administration of HCV non-Structural Protein 2 and IL-12 DNA vaccines in C57BL/6 mice. Methods: A plasmid encoding full-length HCV NS2 prot...

متن کامل

Hepatitis C virus proteins interfere with the activation of chemokine gene promoters and downregulate chemokine gene expression.

The hepatitis C virus (HCV) non-structural (NS) 3/4A protein complex inhibits the retinoic acid inducible gene I (RIG-I) pathway by proteolytically cleaving mitochondria-associated CARD-containing adaptor protein Cardif, and this leads to reduced production of beta interferon (IFN-beta). This study examined the expression of CCL5 (regulated upon activation, normal T-cell expressed and secreted,...

متن کامل

Development of Preventive Vaccines for Hepatitis C Virus E1/E2 Protein

Hepatitis C virus (HCV) is responsible for a vast majority of liver failure cases. HCV is a kind of blood disease appraised to chronically infect 3% of the worlds’ population causing significant morbidity and mortality. Therefore, a complete knowledge of humoral responses against HCV, resulting antibodies, and virus-receptor and virus-antibody interactions, are essential to design a vaccine. HC...

متن کامل

Interferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations

Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of general virology

دوره 88 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2007